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Abstract

This paper is concerned with the damped nonlinear Schrédinger equation.
Through analyzing the characteristics of the equation and the effect of the
damping on the global existence, we construct a variational problem. Then
combining the variational problem, we establish a crucial invariant evolution
flow to derive an explicit and computed criterion to answer: how small are the
initial data such that the solutions of the system globally exist? Moreover, the
small initial data criterion can be applied in the nonlinear Schrédinger equation
with any positive damped parameter.

PACS number: 02.30.Jr
Mathematics Subject Classification: 78A60, 35Q55

1. Introduction

The nonlinear Schrodinger equation
i +Ap+lpl" 9 =0,  ¢eH'RY) (1.1)

is one of the basic evolution models for nonlinear waves in various branches of physics. It can
describe the propagation of light beams with Kerr nonlinearity in nonlinear optics [8]; it also
occurs in hydrodynamics [20] and plasma physics [14]. However, almost all these applications
are under ‘ideal transparency’ by neglecting the effect of damping [5].

In this paper we are interested in equation (1.1) with a linear damped term as follows:

i(p,+A¢+ia(p+|(p|p_lg0=0. (1.2)

Here ¢ = ¢(x, 1) : RY x[0,T,) — Cisa complex valued wavefunction, and 0 < T, < +00
is the maximal existence time. N is the space dimension, i = 4/—1,a > 0 is the damped
parameter, A is the Laplace operator on RV and the nonlinear power exponent p satisfies
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= +oo when N = 1,2, and 22 = N2

l<p< % (we use the cot?vent.ion: % : ‘ W2 = N2
when N > 3). Equation (1.2) arises in various areas of nonlinear optics, plasma physics and

fluid mechanics [1, 2, 5, 6, 10, 19]. For equation (1.2), impose the initial datum
@(x,0) = @, x e RY. (1.3)

Then equations (1.2) and (1.3) form a Cauchy problem. It follows from Kato [7], Cazenave
[4] and Tsutsumi [15, 16] that the local well posedness of the Cauchy problem (1.2)—(1.3) in
H'(RM) is as follows.

For1l < p < % let the initial datum ¢y € H'(RY). Then there exists a unique
solution ¢ (x, t) € C([0, T,,); H'(RM)) of the Cauchy problem (1.2)—(1.3). Here 7, € [0, oo]
is the maximal existence time such that T satisfies the alternative: either 7, = oo (global
existence), or T, < oo and tlngl lo(x, t)|| g1 = oo (blowup).

In particular, equation (1.2) is heavily different from equation (1.1), which is one of the
motivations for us to consider equation (1.2). One important reason is that equation (1.2)
loses the conservation laws of mass and energy, which, however, are possessed by
equation (1.1) [4]. The other important reason is that equation (1.2) cannot have any stationary
or time-periodic solutions because the mass is attenuating described by (2.6), which, however,
is possessed by equation (1.1) [4].

For equation (1.2), when 1 < p < 1 + %, from Ohta and Todorova [12], Tsustumi [17]
and Cazenave [4], we know that the solutions of the Cauchy problem (1.2)—(1.3) globally exist
for all initial data. When 1 + % <p< C ]\IIV_%H from Tsutsumi [15], Fibich [5], Ohta and
Todorova [12], we know that the solutions of the Cauchy problem (1.2)—(1.3) can blow up in
a finite time for some initial data, especially for some sufficiently large initial data; but the
solutions of the Cauchy problem (1.2)—(1.3) also can globally exist in H!(RV) for some initial
data, especially for some sufficiently small initial data. Therefore there naturally appears a
problem as follows.

Problem 1.1. How small are the initial data in H' (RN such that the solutions of the Cauchy

problem (1.2)—(1.3) globally exist for 1 + % <p< (A/,V_J'ZZ)+ ?

In this paper, we are especially concerned with problem 1.1. Our idea is originated in Tsutsumi
[15, 16], Fibich [5], Ohta and Todorova [12] and Levine [11]. First, we fix 1++ < p < 1 Nszzy.
Through analyzing the characteristics of the Cauchy problem (1.2)—(1.3) and the effect of the
damping on the global existence, we construct a variational problem. Then combining the
variational problem, we establish a crucial invariant evolution flow. At last, we derive an
explicit and computed criterion to answer problem 1.1 as follows. First, let Q(x) be the

positive and spherically symmetric solution of the nonlinear elliptic equation
—Au+u—ul’lu=0, ue H'RY). (1.4)

Strauss [13] got the existence of solutions of equation (1.4), and Kwong [9] proved the
uniqueness of the solutions of equation (1.4).

Theorem 1.1 (small initial data criterion). For 1 + % <p< % let Q € H'(RN) be the
positive and spherically symmetric solution of equation (1.4). Assume the damped parameter

a > 0. If the initial datum ¢y € H'(RVN) satisfies

2(p — 1
||¢o||H1<\/ =D o

2(p+)—=N(p—-1
then the solution ¢(t) of the Cauchy problem (1.2)—(1.3) globally exists in H' (RV).
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Remark 1.1. Especially, consider the case of N = 2 and p = 3. We know that
10l5 = 11.70086 for equation (1.4) (see Weinstein [18]). Therefore, for this case, if
the initial datum ¢y € H'(RV) satisfies ||go| 1 < 3.42065, the solution ¢(¢) of the Cauchy

problem (1.2)—(1.3) globally exists in H'(R?).

Remark 1.2. It is interesting in that the small initial data criterion (theorem 1.1) does not
depend on the damping force (i.e, the damping force parameter a). Therefore, the small
initial data criterion (theorem 1.1) can be applied in equation (1.2) with any positive damped
parameter a.

Remark 1.3. For equation (1.1) (i.e. equation (1.2) with a = 0), from Zhang [22], theorem
1.1 is still true.

Remark 14. When N = 2 and p = 3, Fibich[5] used a special transformation
@(t,x) = u(t,x)e"% to get a small initial data criterion with L>-norm of global existence:
if the initial data ¢, satisfies ||@ollz2 < || Qll2, then the solutions of the Cauchy problem
(1.2)—(1.3) globally exist. In fact, for the case of p = 1 + %, the above result is also true,
which implies theorem 1.1. But, this transformation cannot be used to study the case of
1+ % <p< % to obtain a similar result as the case of p = 1 + %. For the case
of 1+ % <p< %, theorem 1.1 is a sufficient condition of global existence, however,
unfortunately, we do not know whether it is optimum.

In this paper, we use || - ||z to denote the norm of H'(R") and use | - ||z, to denote
the norm of L?(R"). For simplicity, hereafter, we will denote Jgw -dx by [ -dx and use C to
denote various positive constants. This paper is organized as follows. In the second section,

we give some concerned preliminaries. In the third section, we prove theorem 1.1.

2. Preliminaries

First,let1 < p < % and u € H'(RY). We define some functionals as follows:
1 2
E) := _/ [|vu|2 - |u|P+1] dx, 2.1
2 p+1
K (1) ;:/[|vu|2—|u|P+1] dx, 2.2)
1 2 2 2 +1
L) := = | [Ivul”+ul” = ——[u|P"" | dx (2.3)
2 p+1
and
ROU:=‘/HVMV+IMZ—WMW“]dn (2.4)

Then pose a variational problem
id =

(2.5)
Q= {u e H'®RV\{0} : R(u) = 0}.

Proposition 2.1 [12, 15]. For 1 < p < %, let the initial datum ¢y € H'(RY) and let

@©(t) be the solution of the Cauchy problem (1.2)—(1.3) on [0, T,). Then for any t € [0, T,),
1
M) =5 [ loOP x =< Mg, 2.6)

3
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and

d
3 Ee®) = —aK(p®)). @7

Remark 2.1. For equation (1.2), if the damped parameter a = 0, the mass and the energy
are conservational [4]. More precisely, for all ¢+ € [0, T,(¢0)), M(¢(t)) = M(¢py) and
E(p(t)) = E(pg). However, if the damped parameter a # 0, from proposition 2.1, we know
that the mass M (¢(¢)) and the energy E(¢(t)) lose the conservation laws. This reflects the
difference between the damping and the dampingless.

Remark 2.2. From (2.6), we know that equation (1.2) cannot have any stationary or time-
periodic solutions. Otherwise, if equation (1.2) had a stationary or time-periodic solution
v, then M(go) = 5 [lpol*dx = 5 [|v]*dx = M(p(1)), which violates (2.6). However,
when the damped parameter a = 0, equation (1.2) [13] has the standing waves (time-periodic
solutions) ¢ (x, 1) = e™"u(x), where w € R is the frequency and u(x) satisfies the nonlinear
elliptic equation

—Au+wu — |ulP'u=0, u e H'[RY).

This also reflects the heavy effect of damping on equation (1.2).
Proposition 2.2 [3, 13]. For the variational problem (2.5), assume 1 < p < (1\1,\/:—22)+' Then
d = min L(u). (2.8)

ue2
Furthermore, d > 0 and the minimizer u of the variational problem (2.5) is the positive and
spherically symmetric solution of equation (1.4).

Proposition 2.3. For 1 < p < (A/]V +22+, let Q € H'(RY) be the positive and spherically

symmetric solution of equatlon (1.4). Then the minimizing value d of the variational problem
(2.5) satisfies d =

soewo=5 1 ClI%-

Proof. Let Q € H'(RY) be the positive and spherically symmetric solution of equation (1.4),

1.e.

-AQ+0—101”7'0 =0, Q€ H'(RY). (2.9)
Then, multiplying equation (2.9) with Q and integrating on R", one has

/[IvQI2+IQI2—|Q|”+']dx=0. (2.10)
Also, multiplying equation (2.9) with xy Q and integrating on R", one has

2—N

lelez——lQl IQI”“] =0. (2.11)

It follows from (2.10) and (2.11) that
2(p+1
/IQI”“d (D /|Q|2dx. (2.12)
2p+ D) —=N(p-—-1)

On the other hand, from proposition 2.2, we know that Q also is the minimizer of the variational
problem (2.5). So

1 p+l
d=L1(Q) =3 VO +10 ——IQI dx, (2.13)
and
R(Q) = /[|vQ|2+ 101> —1Q1”*"1dx = 0. (2.14)
Then from (2.12), (2.13) and (2.14), one has d = W o || . The proof is completeg
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3. Proof of the main result

In this section, we will prove theorem 1.1. To begin with, we establish an invariant evolution
flow of the Cauchy problem (1.2)—(1.3). Put

p—
2p+ D =N(p -1

where Q € H'(RY) is the positive and spherically symmetric solution of equation (1.4).

K = {u e H'@RY): R(w) > 0 and L(u) < ||Q||iz}, 3.1)

Proposition 3.1. Assume 1 + % <p< 1\1]\/+22+ Then K is invariant under the flow generated
by the Cauchy problem (1.2)—(1.3). More precisely, if the initial datum ¢y € K, then the

solution ¢(t) of the Cauchy problem (1.2)—(1.3) still satisfies ¢(t) € K.

Proof. Assume 1 + % <p< % Let the initial datum ¢y € H'(RY) and let ¢(¢)
denote the solution of the Cauchy problem (1.2)~(1.3) on ¢ € [0, T,). Let Q € H'(RV)
be the positive and spherically symmetric solution of equation (1.4). From proposition 2.2,
proposition 2.3 and ¢y € K, it follows that R(¢g) > 0 and L(¢y) < d. At the same time, from

(2.6) and (2.7), one has that

d
EL(w(t)) = —aR(p(1)). (3.2)

In the following, we use the contradiction method to prove that ¢(¢) € K.

Ifo(t) € K,by ¢y € K and the continuity with respect to ¢, there would exista#; € [0, T;)
such that () € K for all t € [0,#) and ¢(¢;) & K. Then, R(p(¢)) > O for all ¢ € [0, #;].
From (3.2), it follows that

L(p(11)) < L(go) < d. (3.3)

Since ¢(t;) € K, then R(p(t1)) = 0. Then from the variational problem (2.5), it follows that
L(¢(t1)) = d, which violates (3.3). Therefore ¢(t) € K. The proof is completed. O

Remark 3.1. For equation (1.2), if the damped parameter a = 0, then the sets

_ i p— 2
K = {u € H:R(u)>0and L(u) < 2(p+1)_N(p_1)“Q”“}’
and
r_ . p— 2
K = {u € H:Ru)<0and L(u) < 2(p+1)—N(p—1)”Q”L2}

are all invariant under the flow generated by the Cauchy problem (1.2)—(1.3) [21, 22]. If the
damped parameter a # 0, from proposition 3.1, we only know that K is invariant. However,
we do not know whether K’ is invariant with the damped parameter a # 0. This also reflects
the difference between the damping and the dampingless.

Proposition 3.2. Assume 1 + % <p< % Let the initial data ¢y € K. Then the solution
©(t) of the Cauchy problem (1.2)—(1.3) globally exists in H'RM).

Proof. For 1 + % <p< % let ¢ () be the solution of the Cauchy problem (1.2)—(1.3)
with the initial data ¢y € K. Then from proposition 3.1, it follows that ¢(t) € K. In other
words, there have L(p(¢)) < d and R(¢(¢)) > 0, which implies that ¢(¢) is bounded in
H'(RY). Therefore, ¢(t) globally exists in H'(R"). The proof is completed. O

5
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Proof of theorem 1.1. Let gy(x) € H'(RV)\{0} satisfy ||go || g1 < /st 10l,2, where Q is
the positive and spherically symmetric solution of equation (1.4). It follows from proposition
2.3 that

1 2
Lig =5 /[|V<Po|2+ ol — ——lpolP] dx
p+1

<1 (| 2 21d
3 Vol” + |@ol"]dx

1 2p-1 2
<3 357D —No -l
_ p—1 2
=2+ NG = 1)IIQlle
=d. (3.4)

Therefore, to prove theorem 1.1, from propositions 3.1 and 3.2, we only need to prove that ¢y
also satisfies R(¢g) > 0. We use the contradiction method to prove it.
If R(¢o) > 0 were not true, one would have

R(po) = f[lv¢0|2 +l@ol* — l@olP*'1dx < 0. (3.5)

First, we prove R(gg) # 0. Otherwise, ¢y € Q2. Then it follows from the variational problem
(2.5) that L(¢g) > d, which violates (3.4). Then

R(po) = /[|V¢0|2 +1@ol* — lgolP*'1dx < 0. (3.6)

Thus there exists a u € (0, 1) such that R(uugp) = 0, which implies that gy € 2. Then it
also follows from the variational problem (2.5) that L(ugy) > d. But

1
- 1#”” / ol P! dx

L :l 2 2 2 dx_
(o) SH [Iveol” + @ol”]

1
< EMZ/[IV¢0|2+ ol *] dx

1 2 2p—1) 2
<39 3oTh NG =l
2 p— 2
=Hu 2o+ —Np -1 1917-
<d. 3.7

This is a contradiction. Therefore ¢y € K. By proposition 3.2, we obtain the solution ¢(t) of
the Cauchy problem (1.2)—(1.3) globally exists in H'(RV). O
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